Search

The impact of nuclear shape on the emergence of the neutron dripline - Nature.com

  • 1.

    Indelicato, P. & Karpov, A. Sizing up atoms. Nature 498, 40–41 (2013).

    ADS  CAS  Google Scholar 

  • 2.

    Nazarewicz, W. The limits of nuclear mass and charge. Nat. Phys. 14, 537–541 (2018).

    CAS  Google Scholar 

  • 3.

    Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012).

    ADS  CAS  Google Scholar 

  • 4.

    Tsunoda, N. et al. Exotic neutron-rich medium-mass nuclei with realistic nuclear forces. Phys. Rev. C 95, 021304(R) (2017).

    ADS  Google Scholar 

  • 5.

    Goeppert Mayer, M. On closed shells in nuclei. II. Phys. Rev. 75, 1969 (1949).

    ADS  CAS  Google Scholar 

  • 6.

    Haxel, O., Jensen, J. H. D. & Suess, H. E. On the “magic numbers” in nuclear structure. Phys. Rev. 75, 1766 (1949).

    ADS  CAS  Google Scholar 

  • 7.

    Rainwater, J. Nuclear energy level argument for a spheroidal nuclear model. Phys. Rev. 79, 432 (1950).

    ADS  CAS  MATH  Google Scholar 

  • 8.

    Bohr, A. & Mottelson, B. R. Nuclear Structure Vol. II (Benjamin, 1975).

  • 9.

    Casten, R. F. Nuclear Structure From A Simple Perspective (Oxford Univ. Press, 2000).

  • 10.

    Thibault, C. et al. Direct measurement of the masses of 11Li and 26–32Na with an on-line mass spectrometer. Phys. Rev. C 12, 644–657 (1975).

    ADS  CAS  Google Scholar 

  • 11.

    Guillemaud-Mueller, D. et al. β-Decay schemes of very neutron-rich sodium isotopes and their descendants. Nucl. Phys. A 426, 37–76 (1984).

    ADS  Google Scholar 

  • 12.

    Warburton, E. K., Becker, J. A. & Brown, B. A. Mass systematics for A = 29–44 nuclei: the deformed A ~ 32 region. Phys. Rev. C 41, 1147 (1990).

    ADS  CAS  Google Scholar 

  • 13.

    Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. & Zuker, A. P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427–488 (2005).

    ADS  CAS  Google Scholar 

  • 14.

    Heyde, K. & Wood, J. L. Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467 (2011).

    ADS  CAS  Google Scholar 

  • 15.

    Tanihata, I. et al. Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676–2679 (1985).

    ADS  CAS  Google Scholar 

  • 16.

    Hansen, P. G. & Jonson, B. The neutron halo of extremely neutron-rich nuclei. Europhys. Lett. 4, 409 (1987).

    ADS  CAS  Google Scholar 

  • 17.

    Gade, A. & Glasmacher, T. In-beam nuclear spectroscopy of bound states with fast exotic ion beams. Prog. Part. Nucl. Phys. 60, 161–224 (2008).

    ADS  CAS  Google Scholar 

  • 18.

    Nakamura, T., Sakurai, T. & Watanabe, H. Exotic nuclei explored at in-flight separators. Prog. Part. Nucl. Phys. 97, 53–122 (2017).

    ADS  CAS  Google Scholar 

  • 19.

    Takayanagi, K. Effective interaction in non-degenerate model space. Nucl. Phys. A 852, 61–81 (2011).

    ADS  Google Scholar 

  • 20.

    Takayanagi, K. Effective Hamiltonian in the extended Krenciglowa-Kuo method. Nucl. Phys. A 864, 91–112 (2011).

    ADS  Google Scholar 

  • 21.

    Tsunoda, N., Takayanagi, K., Hjorth-Jensen, M. & Otsuka, T. Multi-shell effective interactions. Phys. Rev. C 89, 024313 (2014).

    ADS  Google Scholar 

  • 22.

    Machleidt, R. & Entem, D. R. Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1 (2011).

    ADS  CAS  Google Scholar 

  • 23.

    Otsuka, T., Suzuki, T., Holt, J. A., Schwenk, A. & Akaishi, Y. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 032501 (2010).

    ADS  Google Scholar 

  • 24.

    Fujita, J. & Miyazawa, H. Pion theory of three-body forces. Prog. Theor. Phys. 17, 360 (1957).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  • 25.

    Stroberg, S. R. et al. Nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 118, 032502 (2017).

    ADS  CAS  Google Scholar 

  • 26.

    Simonis, J., Stroberg, S. R., Hebeler, K., Holt, J. D. & Schwenk, A. Saturation with chiral interactions and consequences for finite nuclei. Phys. Rev. C 96, 014303 (2017).

    ADS  Google Scholar 

  • 27.

    Otsuka, T., Gade, A., Sorlin, O., Suzuki, T. & Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020).

    ADS  CAS  Google Scholar 

  • 28.

    Loelius, C. et al. Enhanced electric dipole strength for the weakly bound states in 27Ne. Phys. Rev. Lett. 121, 262501 (2018).

    ADS  CAS  Google Scholar 

  • 29.

    Fernández-Domínguez, B. et al. Re-examining the transition into the N = 20 island of inversion: structure of 30Mg. Phys. Lett. B 779, 124 (2018).

    ADS  Google Scholar 

  • 30.

    Xu, Z. Y. et al. Nuclear moments of the low-lying isomeric 1+ state of 34Al: Investigation on the neutron 1p1h excitation across N = 20 in the island of inversion. Phys. Lett. B 782, 619 (2018).

    ADS  CAS  Google Scholar 

  • 31.

    Murray, I. et al. Spectroscopy of strongly deformed 32Ne by proton knockout reactions. Phys. Rev. C 99, 011302(R) (2019).

    ADS  Google Scholar 

  • 32.

    Nishibata, H. et al. Structure of 31Mg: shape coexistence revealed by β-γ spectroscopy with spin-polarized 31Na. Phys. Rev. C 99, 024322 (2019).

    ADS  CAS  Google Scholar 

  • 33.

    Shimizu, N., Mizusaki, T., Utsuno, Y. & Tsunoda, Y. Thick-restart block Lanczos method for large-scale shell-model calculations. Comput. Phys. Commun. 244, 372–384 (2019).

    ADS  CAS  Google Scholar 

  • 34.

    Otsuka, T., Honma, M., Mizusaki, T., Shimizu, N. & Utsuno, Y. Monte Carlo shell model for atomic nuclei. Prog. Part. Nucl. Phys. 47, 319–400 (2001).

    ADS  CAS  Google Scholar 

  • 35.

    Shimizu, N. et al. New-generation Monte Carlo shell model for the K computer era. Prog. Theor. Exp. Phys. 2012, 01A205 (2012).

    Google Scholar 

  • 36.

    Marsh, B. A. et al. Characterization of the shape-starggering effect in mercury nuclei. Nat. Phys. 14, 1163–1167 (2018).

    CAS  Google Scholar 

  • 37.

    Ichikawa, Y. et al. Interplay between nuclear shell evolution and shape deformation revealed by the magnetic moment of 75Cu. Nat. Phys. 15, 321–325 (2019).

    CAS  Google Scholar 

  • 38.

    Taniuchi, R. et al. 78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 569, 53–58 (2019).

    ADS  CAS  Google Scholar 

  • 39.

    Ahn, D. S. et al. Location of the neutron dripline at fluorine and neon. Phys. Rev. Lett. 123, 212501 (2019).

    ADS  CAS  Google Scholar 

  • 40.

    Koura, H. et al. Nuclidic mass formula on a spherical basis with an improved even-odd term. Prog. Theor. Phys. 113, 305–325 (2005).

    ADS  CAS  Google Scholar 

  • 41.

    Otsuka, T., Suzuki, T., Fujimoto, R., Grawe, H. & Akaishi, Y. Evolution of the nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005).

    ADS  Google Scholar 

  • 42.

    Fauerbach, M. et al. New search for 26O. Phys. Rev. C 53, 647–651 (1996).

    ADS  CAS  Google Scholar 

  • 43.

    Sakurai, H. et al. Evidence for particle stability of 31F and particle instability of 25N and 28O. Phys. Lett. B 448, 180–184 (1999).

    ADS  CAS  Google Scholar 

  • 44.

    Dobaczewski, J., Michel, N., Nazarewicz, W., Płoszajczak, M. & Rotureau, J. Shell structure of exotic nuclei. Prog. Part. Nucl. Phys. 59, 432–445 (2007).

    ADS  CAS  Google Scholar 

  • 45.

    Caurier, E., Nowacki, F. & Poves, A. Merging of the islands of inversion at N = 20 and N = 28. Phys. Rev. C 90, 014302 (2014).

    ADS  Google Scholar 

  • 46.

    Jahn, H. A. & Teller, E. Stability of polyatomic molecules in degenerate electronic states. I—Orbital degeneracy. Proc. R. Soc. Lond. A 161, 220 (1937).

    ADS  CAS  MATH  Google Scholar 

  • 47.

    Crawford, H. L. et al. First spectroscopy of the near drip-line nucleus 40Mg. Phys. Rev. Lett. 122, 052501 (2019).

    Google Scholar 

  • 48.

    Nakamura, T. et al. Deformation-driven p-wave halos at the drip line: 31Ne. Phys. Rev. Lett. 112, 142501 (2014).

    ADS  CAS  Google Scholar 

  • 49.

    Bohr, A. & Mottelson, B. R. Nuclear Structure Vol. I (Benjamin, 1969).

  • 50.

    Otsuka, T., Tsunoda, Y., Abe, T., Shimizu, N. & Van Duppen, P. Underlying structure of collective bands and self-organization in quantum systems. Phys. Rev. Lett. 123, 222502 (2019).

    ADS  CAS  Google Scholar 

  • 51.

    Hjorth-Jensen, M., Kuo, T. T. S. & Osnes, E. Realistic effective interactions for nuclear systems. Phys. Rep. 261, 125–270 (1995).

    ADS  CAS  Google Scholar 

  • 52.

    Krenciglowa, E. M. & Kuo, T. T. S. Convergence of effective Hamiltonian expansion and partial summations of folded diagrams. Nucl. Phys. A 235, 171–189 (1974).

    ADS  Google Scholar 

  • 53.

    Entem, D. R. & Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001 (2003).

    ADS  Google Scholar 

  • 54.

    Bogner, S., Kuo, T. T. S., Coraggio, L., Covello, A. & Itaco, N. Low momentum nucleon-nucleon potential and shell model effective interactions. Phys. Rev. C 65, 051301 (2002).

    ADS  Google Scholar 

  • 55.

    Nogga, A., Bogner, S. K. & Schwenk, A. Low-momentum interaction in few-nucleon systems. Phys. Rev. C 70, 061002 (2004).

    ADS  Google Scholar 

  • 56.

    Carlson, J. et al. Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067 (2015).

    ADS  MathSciNet  CAS  Google Scholar 

  • 57.

    Pastore, S. et al. Quantum Monte Carlo calculations of weak transitions in A = 6–10 nuclei. Phys. Rev. C 97, 022501 (2018).

    ADS  CAS  Google Scholar 

  • 58.

    Ekström, A., Hagen, G., Morris, T. D., Papenbrock, T. & Schwartz, P. D. Δ isobars and nuclear saturation. Phys. Rev. C 97, 024332 (2018).

    ADS  Google Scholar 

  • 59.

    Honma, M., Otsuka, T., Brown, B. A. & Mizusaki, T. Effective interaction for pf-shell nuclei. Phys. Rev. C 65, 061301 (2002).

    ADS  Google Scholar 

  • 60.

    Notani, M. et al. New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64 A MeV 48Ca beam. Phys. Lett. B 542, 49–54 (2002).

    ADS  CAS  Google Scholar 

  • 61.

    Baumann, T. et al. Discovery of 40Mg and 42Al suggests neutron drip-line slant towards heavier isotopes. Nature 449, 1022–1024 (2007).

    ADS  CAS  Google Scholar 

  • 62.

    Hagen, G. et al. Neutron and weak-charge distributions of the 48Ca nucleus, estimated uncertainties from truncations of employed method and model space. Nat. Phys. 12, 186–190 (2016).

    CAS  Google Scholar 

  • 63.

    Hergert, H., Binder, S., Calci, A., Langhammer, J. & Roth, R. Ab initio calculations of even oxygen isotopes with chiral two-plus-three-nucleon interactions. Phys. Rev. Lett. 110, 242501 (2013).

    ADS  CAS  Google Scholar 

  • 64.

    Hergert, H. et al. Ab initio multireference in-medium similarity renormalization group calculations of even calcium and nickel isotopes. Phys. Rev. C 90, 041302 (2014).

    ADS  Google Scholar 

  • 65.

    Stroberg, S. R., Hergert, H., Bogner, S. K. & Holt, J. D. Nonempirical interactions for the nuclear shell model: an update. Annu. Rev. Nucl. Part. Sci. 69, 307–362 (2019).

    ADS  CAS  Google Scholar 

  • 66.

    Simonis, J., Hebeler, K., Holt, J. D., Menendez, J. & Schwenk, A. Exploring sd-shell nuclei from two- and three-nucleon interactions with realistic saturation properties. Phys. Rev. C 93, 011302 (2016).

    ADS  Google Scholar 

  • 67.

    Morris, T. D. et al. Structure of the lightest tin isotopes. Phys. Rev. Lett. 120, 152503 (2018).

    ADS  CAS  Google Scholar 

  • 68.

    Holt, J. D., Menendez, J., Simonis, J. & Schwenk, A. Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes. Phys. Rev. C 90, 024312 (2014).

    ADS  Google Scholar 

  • 69.

    Smirnova, N. A. et al. Effective interactions in the sd shell. Phys. Rev. C 100, 054329 (2019).

    ADS  CAS  Google Scholar 

  • 70.

    Dikmen, E. et al. Ab initio effective interactions for sd-shell valence nucleons. Phys. Rev. C 91, 064301 (2015).

    ADS  Google Scholar 

  • 71.

    Hergert, H., Bogner, S. K., Morris, T. D., Schwenk, A. & Tsukiyama, K. The in-medium similarity renormalization group: a novel ab initio method for nuclei. Phys. Rep. 621, 165–222 (2016).

    ADS  MathSciNet  CAS  Google Scholar 

  • 72.

    Epelbaum, E., Hammer, H.-W. & Meißner, Ulf-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773 (2009).

    ADS  CAS  Google Scholar 

  • 73.

    Bogner, S. K. et al. Nonperturbative shell-model interactions from the in-medium similarity renormalization group. Phys. Rev. Lett. 113, 142501 (2014).

    ADS  CAS  Google Scholar 

  • 74.

    Jansen, G. R., Engel, J., Hagen, G., Navratil, P. & Signoracci, A. Ab initio coupled-cluster effective interactions for the shell model: application to neutron-rich oxygen and carbon isotopes. Phys. Rev. Lett. 113, 142502 (2014).

    ADS  CAS  Google Scholar 

  • 75.

    Stroberg, S. R., Hergert, H., Holt, J. D., Bogner, S. K. & Schwenk. A. Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians. Phys. Rev. C 93, 051301(R) (2016).

    ADS  Google Scholar 

  • 76.

    Coraggio, L., Gargano, A. & Itaco, N. Double-step truncation procedure for large-scale shell-model calculations. Phys. Rev. C 93, 064328 (2016).

    ADS  Google Scholar 

  • 77.

    Hebeler, K., Bogner, S. K., Furnstahl, R. J., Nogga, A. & Schwenk, A. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83, 031301 (2011).

    ADS  Google Scholar 

  • 78.

    van Kolck, U. Few-nucleon forces from chiral Lagrangians. Phys. Rev. C 49, 2932 (1994).

    ADS  Google Scholar 

  • 79.

    Epelbaum, E. et al. Three-nucleon forces from chiral effective field theory. Phys. Rev. C 66, 064001 (2002).

    ADS  Google Scholar 

  • 80.

    Gazit, D., Quaglioni, S. & Navrátil, P. Three-nucleon low-energy constants from the consistency of interactions and currents in chiral effective field theory. Phys. Rev. Lett. 103, 102502 (2009); erratum 122, 029901 (2019).

    ADS  Google Scholar 

  • 81.

    Kohno, M. Nuclear and neutron matter G-matrix calculations with a chiral effective field theory potential including effects of three-nucleon interactions. Phys. Rev. C 88, 064005 (2013); erratum 96, 059903 (2017).

    ADS  Google Scholar 

  • 82.

    Bogner, S. K., Furnstahl, R. J. & Perry, R. J. Similarity renormalization group for nucleon-nucleon interactions. Phys. Rev. C 75, 061001(R) (2007).

    ADS  Google Scholar 

  • 83.

    Bogner, S. K., Furnstahl, R. J., Ramanan, S. & Schwenk, A. Low-momentum interactions with smooth cutoffs. Nucl. Phys. A 784, 79–103 (2007).

    ADS  Google Scholar 

  • 84.

    Wildenthal, B. H. & Chung, W. Collapse of the conventional shell-model ordering in the very-neutron-rich isotopes of Na and Mg. Phys. Rev. C 22, 2260 (1980).

    ADS  CAS  Google Scholar 

  • 85.

    Watt, A., Singhal, R. P., Storm, M. H. & Whitehead, R. R. A shell-model investigation of the binding energies of some exotic isotopes of sodium and magnesium. J. Phys. G 7, L145–L148 (1981).

    ADS  CAS  Google Scholar 

  • 86.

    Utsuno, Y., Otsuka, T., Mizusaki, T. & Honma, M. Varying shell gap and deformation in N ~ 20 unstable nuclei studied by the Monte Carlo shell model. Phys. Rev. C 60, 054315 (1999).

    ADS  Google Scholar 

  • 87.

    Motobayashi, T. et al. Large deformation of the very neutron-rich nucleus 32Mg from intermediate-energy Coulomb excitation. Phys. Lett. B 346, 9–14 (1995).

    ADS  CAS  Google Scholar 

  • 88.

    Gade, A. et al. Spectroscopy of 36Mg: interplay of normal and intruder configurations at the neutron-rich boundary of the “island of inversion”. Phys. Rev. Lett. 99, 072502 (2007).

    ADS  CAS  Google Scholar 

  • 89.

    Doornenbal, P. et al. Spectroscopy of 32Ne and the “island of inversion”. Phys. Rev. Lett. 103, 032501 (2009).

    ADS  CAS  Google Scholar 

  • 90.

    Nakamura, T. et al. Halo structure of the island of inversion nucleus 31Ne. Phys. Rev. Lett. 103, 262501 (2009).

    ADS  CAS  Google Scholar 

  • 91.

    Doornenbal, P. et al. In-beam γ-ray spectroscopy of 34,36,38Mg: merging the N = 20 and N = 28 shell quenching. Phys. Rev. Lett. 111, 212502 (2013).

    ADS  CAS  Google Scholar 

  • 92.

    Kobayashi, N. et al. Observation of a p-wave one-neutron halo configuration in 37Mg. Phys. Rev. Lett. 112, 242501 (2014).

    ADS  CAS  Google Scholar 

  • 93.

    Crawford, H. L. et al. Rotational band structure in 32Mg. Phys. Rev. C 93, 031303(R) (2016).

    ADS  Google Scholar 

  • 94.

    Doornenbal, P. et al. Low-Z shore of the “island of inversion” and the reduced neutron magicity toward 28O. Phys. Rev. C 95, 041301(R) (2017).

    ADS  Google Scholar 

  • Let's block ads! (Why?)



    "impact" - Google News
    November 04, 2020 at 11:08PM
    https://ift.tt/2I0xPAS

    The impact of nuclear shape on the emergence of the neutron dripline - Nature.com
    "impact" - Google News
    https://ift.tt/2RIFll8
    Shoes Man Tutorial
    Pos News Update
    Meme Update
    Korean Entertainment News
    Japan News Update

    Bagikan Berita Ini

    0 Response to "The impact of nuclear shape on the emergence of the neutron dripline - Nature.com"

    Post a Comment

    Powered by Blogger.